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Abstract

The motion of a rigid dumbbell settling under gravity in a stationary two-
dimensional cellular flow field is investigated. The dumbbell is modeled as
two identical beads connected by a rigid rod. Assuming that the bead radius
is much shorter than the bead to bead distance, a simple model is obtained
to describe the dynamical behavior of the dumbbell in terms of evolution of
the dumbbell orientation and the velocity of the center of mass. The average
velocity of the dumbbell in the gravity direction was found to depend on the
dumbbell length, the inertia parameter and the terminal settling velocity in still
fluid. For certain conditions the dumbbell remains suspended in the flow field.
In one of the suspension regimes the dumbbell remains indefinitely attached to
a fixed point. This behavior is related to the existence to saddle nodes in the
cellular flow field.

PACS numbers: 92.10.Wa, 82.35.Lr, 05.60.−K

1. Introduction

In this paper we numerically investigate the advection of a dumbbell-shaped particle settling
under gravity in a non-homogeneous periodic flow. In recent years, the transport properties
of immersed particles have been the object of considerable research due to their numerous
scientific and engineering applications. Examples are the motion of aerosols or contaminants
in the atmosphere, suspension and sedimentation in rivers, migration of microorganisms in
the ocean, motion of red blood cells in capillaries or fiber motion in flows of rheological
interest.

A common hypothesis when considering the motion of such particles is that they are
spherical in shape. This assumption allows the development of simple mathematical models
[1] that successfully describe the particle dynamics in cases where it is more or less rounded
or its shape is not far deviated from sphericity. In nature or in industrial applications, however,
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particles vary in a wide range of shapes, from near spherical or ellipsoidal to highly irregular
shapes as compound aggregates.

The motion of non-spherical particles may be much more complex than those of spheres
due to the coupling between the orientation and translational motions [2, 3]. In a moving
fluid there is an additional source of complexity because of the interaction between the flow
kinematics and the particle orientation [4, 5]. It is well known that induced-by-flow particle
alignment plays an important role in determining the physical properties of a solution. As an
example, the addition of fibers to a Newtonian fluid can change the flow kinematics due to
flow-induced fiber alignment [6]. Moreover, the tendency of elongated particles to align their
major axis along the shear rate could lead the system to exhibit anisotropy [7].

This flow-induced particle alignment may also be of importance in other scenarios where
the shear flow effects are accompanied by the presence of an external force field. An important
example occurs during the settling of heavy particles in a gravitational field. In still fluid,
settling velocity of non-spherical particles will depend on the particle orientation with respect
to gravity. However, in the cases were the fluid is in motion, the settling process could be
affected by the interaction between the particle and the shear rate field. Mallier et al [8] studied
the motion of ellipsoidal particles in a non-homogeneous two-dimensional flow field which
has zero average velocity. He found that spherical particles without inertia fall on average with
the still fluid settling velocity, while non-spherical particles settle on average more rapidly.
He concluded that departures from the spherical shape have a negative incidence on particle
suspension. However, he dedicated his study to ellipsoidal particles and did not consider any
other possibilities.

The question that arises is if similar effects should be expected for distinct particle shapes
than elliptic. Non-elliptic particles are common in several systems involving emulsions,
dust, polymers, slurries or any other small particles that can get attached to form flocs or
composite aggregates with lobes and large surface protuberances. In such cases, the ellipsoid
might not be the most appropriate model for particle shape because it does not consider the
effects of inhomogeneous mass distribution or the effects of shape irregularities on the forces
exerted by the fluid. A simple case study which allows us to overcome the limitations of
the ellipsoidal model is the rigid dumbbell. In general, a dumbbell shaped particle is a non-
spherical structure with two lobes connected by a handle. In its simplest version it consists
of two spheres separated by a fixed distance and connected by a rigid rod of negligible mass.
This ideal model is on the basis of many studies on the hydrodynamics of arbitrary shaped
particles [9] and particularly it has been extensively employed in the study of polymers [10].
Recently the authors considered the problem of an elastic dumbbell settling under gravity in a
periodic flow and subjected to Brownian forces [11]. Their analysis of the interaction between
the dumbbell and the flow field showed the existence of stability regions where the dumbbell
can be eventually trapped for a long time. The existence of such basins of attraction proved to
have a crucial role in the settling process affecting the values of mean quantities as the average
settling velocity.

The purpose of this paper is to analyze the dynamical response of a falling dumbbell
in a cellular flow field similar of those considered in Maxey works. We will determine the
existence of regimes of permanent suspension with the emphasis put on the differences with
the case of a single sphere in identical flow conditions. In order to capture the main features of
the dumbbell dynamics we will restrict the analysis to the particular case of identical spheres
which are more dense than the surrounding fluid. In this context, the motion of each particle
can be described by a second-order integro-differential equation that has the particle inertia,
viscous drag and gravity forces as the main components [12, 13]. Other forces such as the
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Figure 1. Schematic of the physical problem.

Basset history force, pressure gradient or added mass force, significant only when the particle
density is of the order of the fluid density [1, 14], will be neglected.

A key point of the present analysis is that suspension occurs when dumbbells approach
flow locations where the net force on the spheres is null. As will be shown, this phenomenon
involves the combined effect of the bipolar particle geometry and the topological flow structure
containing saddle points. Considering that the above conjecture does not imply any particular
condition on the length of the dumbbell it will be taken large enough so the hydrodynamics
interaction between the beads could be neglected.

The paper is organized as follows: the dimensionless motion equations of the dumbbell
in a 2D cellular flow field are derived in section 2. In section 3 we present some examples of
dumbbell trajectories showing the main features of the settling process. Section 4 is devoted
to analyze the average settling velocity as a function of the dumbbell length. In section 5,
dumbbell suspension is interpreted in terms of the existence of stable fixed points. Finally
section 6 is devoted to conclusion and perspectives.

2. Equation for dumbbell motion

Consider a dumbbell shaped body settling under gravity in a stationary flow field u(r) as
sketched in figure 1. Two identical beads, labeled 1 and 2, with mass m and radius R are
connected by a thin rigid rod so that the distance between the mass centers of the beads is
d. It is assumed that the mass and the hydrodynamic resistance of the rod are negligible
compared to those of the beads and it will be considered that the beads are sufficient far apart
for hydrodynamic interaction between them to be negligible. This last assumption implies
that d � R. In addition, buoyancy forces on the bead will be ignored by assuming that the
fluid density is negligible compared to that of the particles.

Provided that the beads are sufficiently small, the position ri (t) of each bead and their
velocity vi (t) are in first approximation

mr̈1 = F1 + T + mg (1)

mr̈2 = F2 − T + mg (2)
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where Fi, the hydrodynamic force on the bead i, is, by Stokes’ law

Fi = β[u(ri) − vi] (3)

with β = 6πμR being the Stokes drag coefficient for a bead and T a constraint force acting
on each bead and directed along the beads line of center.

As an alternative, the motion of the dumbbell can be completely specified by the
instantaneous velocity V = (V1 + V2)/2 of its mass center, r = (r1 + r2)/2 and the
instantaneous angular velocity � about this point.

An equation for the translational motion of the dumbbell mass center can be obtained by
adding equations (1) and (2) to give

m
dV

dt
= β

[
1

2
(u2 + u1) − V + W

]
, (4)

where W = mg/β is the terminal fall velocity for a bead in still fluid.
The rotational dynamics of the dumbbell can be obtained from the angular momentum

equation for a rigid body. Denoting L, the angular momentum measured about the mass center
of the dumbbell and M the external torques acting on each bead, the evolution of L is described
by

dL

dt
= M1 + M2, (5)

where M1 = d/2 × F1, M2 = −d/2 × F2 and d = r2 − r1 the connector vector between
beads.

If the dumbbell is constrained to move in the x − y plane the direction of the angular
velocity vector is along the z-axis and the angular momentum is given by L = I�. Substituting
into equation (5) it is obtained

I
d�

dt
= β

2
[d × (u2 − u1) − d2�ẑ], (6)

where

I = 4

5
mR2 + m

d2

2
(7)

is the moment of inertia about the principal axis of the dumbbell. As an example we consider
the motion of the dumbbell in still fluid. In this case u1 = u2 = 0 and thus equations (4) and
(6) become:

m
dV

dt
= β[−V + W] (8)

I
d�

dt
= −d2β

2
�ẑ. (9)

For arbitrary values of Vo, the initial center-of-mass velocity and �o, the initial angular
velocity of the dumbbell principal axis, the solutions are

V = (Vo − W)e−t/τ1 + W (10)

� = �oe
−t/τ2 (11)

with τ1 = β/m and τ2 = β/(2Id2). If for example Vo = 0 and �o = 0 then the dumbbell
settles out without rotation and with terminal velocity V = W.
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Figure 2. Streamlines of the flow field. Arrows indicate flow direction.

Equations (4) and (6) have been derived under general considerations and can be used to
study the dumbbell motion in many two-dimensional flow conditions. In the present work the
flow field is derived from the streamfunction ψ :

ψ(x, y) = Uo/k sin kx sin ky. (12)

The corresponding velocity field at the point (x, y) is

u = Uo(sin kx cos ky,− cos kx sin ky, 0) (13)

with gravity aligned in the negative y direction. Figure 2 shows some typical streamlines. The
flow consists of a periodic array of counter-rotating eddies which extend periodically in both x
and y directions, with periodicity 2π/k. The maximum velocity occurs at the cell boundaries
and there are equilibrium points at the center of each cell and at the corners.

Taking Uo and L = 1/k as characteristic velocity and length, respectively, the equations
of motion for the dumbbell can be expressed in non-dimensional form. Non-dimensional
variables and parameters are introduced as follows:

x∗
i = xi

L
, y∗

i = yi

L
d∗ = d

L
, R∗ = R

L
(14)

t∗ = t
Uo

L
, V ∗ = V

Uo

, u∗
i = ui

U0
W ∗ = W

Uo

. (15)

Now, equations (4) and (6), with the asterisks suppressed, take the form

ẍ = A
[

1
2 (sin x2 cos y2 + sin x1 cos y1) − Vx

]
(16)

ÿ = A
[− 1

2 (cos x2 sin y2 + cos x1 sin y1) − Vy − W)
]

(17)
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θ̈ = Ar [−d cos θ(cos x2 sin y2 − cos x1 sin y1)

− d sin θ(sin x2 cos y2 − sin x1 cos y1) − d2�], (18)

where

x1 = x − d/2 cos θ, y1 = y − d/2 sin θ (19)

x2 = x + d/2 cos θ, y2 = y + d/2 sin θ. (20)

The angle θ specifies the orientation of the dumbbell in the (x, y) plane and A,Ar are non-
dimensional parameters defined as

A = βL

mUo

(21)

Ar = βL3

IUo

= A(
d2 + 2

5R2
) . (22)

Remembering that d � R,Ar can be expressed in a simplified form as

Ar = A

d2
, (23)

and equation (18) takes the form

θ̈ = A

d
[−cos θ(cos x2 sin y2 − cos x1 sin y1)

− sin θ(sin x2 cos y2 − sin x1 cos y1)] − A�. (24)

Thus, for the translational motion of the dumbbell a Stokes number can be defined, 1/A, which
measures the dimensionless response time of the dumbbell to changes in the surrounding fluid
while for the motion about the dumbbell mass center now appears a ‘rotational’ Stokes number,
1/Ar , which has the same meaning as 1/A but referred to the angular velocity. Note that Ar

cannot be regarded as an independent parameter as well as it depends on the dumbbell length,
d. Thus, if the dumbbell length and A are both increased in such way that Ar decreases and
the relation Ar � A is fulfilled, the rotational dynamics becomes less sensitive to changes
in the surrounding fluid. On the contrary if d � 1, irrespective of the value of A, it will be
shown in the following sections that the dumbbell behaves as it were a single particle.

The three coupled nonlinear systems given by equations (16), (17) and (24) can be written
as a nonlinear dynamical system as

Ẋ = f(X) (25)

with X = (x, y, θ, Vx, Vy,�), f = (Vx, Vy,�, f1, f2, f3) and fi (i = 1, 2, 3) being the right-
hand side of equations (16), (17) and (24) respectively. These equations were numerically
integrated by using a fourth-order Runge–Kutta routine. The initial position and orientation
of the dumbbell, (x0, y0, θ0) were taken to be at random, while V0 and �0 were such that the
corresponding initial velocities of the beads V1 and V2 coincide with the fluid velocity at the
bead positions.

3. Settling motion

Some examples of dumbbell trajectories for A = 2,W = 0.5 and three different values of the
dumbbell length, d are shown in figures 3, 4 and 5.

Shown is a portion of the path after the dumbbell has reached the asymptotic state. The
left side corresponds to the evolution of the dumbbell mass center and the right side represents
the orientation angle versus the vertical coordinate y. The common feature of all these plots is
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-100π
0 π/2 π
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Figure 3. An example of dumbbell trajectory for the inertia parameter A = 2, single bead still fluid
settling velocity W = 0.5 and bead-to-bead distance d = 0.75. Left side: path of the dumbbell
mass center in the (x, y) plane. Right side: orientation angle θ versus the vertical coordinate y.

0 π 2π

-90π

-92π

-94π

-96π

-98π

d=1.40

y

x

-100π
0 π/2 π

 θ

Figure 4. Similar as figure 3, for A = 2,W = 0.5 and d = 1.40.

that the motion is open. The dumbbell tends to contour the boundary of the eddies giving the
trajectory a sinuous look. This feature emphasizes the importance of the flow field in driving
the settling process. However, in all of the three examples the average motion is downward
and thus gravity is still the dominating force.

Figure 3 corresponds to dumbbell length d = 0.75. In this case the dumbbell mass center
follows a periodic trajectory. In general, it was observed that when the motion was periodic,
the long-term regime is not sensitive to the choice of initial conditions. As was noted by
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-254π
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Figure 5. Similar as figure 3, for A = 2,W = 0.5 and d = 1.49.

Maxey [15] this phenomenon is due to the effects of inertia. Indeed, he observed that inertia
induce a migration of particles toward the boundary of the cells were they collect on single
isolated trajectories irrespective of their initial conditions.

The sinuosity of the dumbbell trajectory can be understood in terms of the location of the
dumbbell beads in the cells. When the beads are in zones with upward flow they are submitted
to a vertical drag force opposite gravity. In such circumstances, the net vertical force decreases
or it may be directed upward. As a consequence the downward velocity slows down. During
these intervals the settling process is interrupted and the dumbbell remains almost suspended.
While this balance of the vertical force occurs, the dumbbell is driven horizontally by the net
horizontal component of the drag force. On the other hand, when the beads are in downward
zones of the flow, drag and gravity forces push the mass center downward and the effect of
settling is increased. The general picture is that the force of gravity dominates most of the
times and the dumbbell settles down.

The motion of the dumbbell in the vertical direction extends over a large range of cells.
An alternative method of plotting that takes advantage of the periodic nature of the flow field
consists of restricting the dumbbell motion to lie in the box 0 � x, y � 2π . In this way,
long portions of the path can be resumed in a single plot, allowing the immediate capture of
essential features of the dumbbell dynamics, as for example, if the motion is periodic or not.
The condensed path diagram thus obtained for the previous example is shown in figure 6.
Here, the periodic nature of the motion becomes evident, with periodicity 2π in the vertical
direction and horizontal amplitude lying in one cell length. Along this path the downward
velocity of the dumbbell, plotted at the center of figure 6, varies over a large range with an
average value larger than W = 0.5. This increased settling effect arises because the dumbbell
spends most of the time in flow regions with downward velocities, also evident in the figure,
where the drag force and gravity point in the same direction.

To show the evolution of the orientation angle, θ , a sketch of the dumbbell was drawn at
several positions on the path. The condensed plot of θ at the right side of figure 6 confirms the
periodical behavior. In this example, while the mass center runs over its path during a cycle,
the dumbbell axis performs a complete turn.

8
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0 π 2π
0

π

2π
d = 0.75

y
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0 π/2 π

θ
-2 0

 

Vy

Figure 6. Condensed path diagrams for the dumbbell trajectory of figure 3. A = 2,W = 0.5 and
d = 0.75. Left side: path of the dumbbell mass center in the reduced (x, y) plane. Right side:
orientation angle θ versus the reduced vertical coordinate y. Arrows indicate the flow direction.
The dumbbell was plotted at some successive position to illustrate the changing orientation.

0 π 2π
0

π

2π
d=1.40

x

y

0 π /2 2π
θ

-2 0

 

Vy

Figure 7. Condensed path diagrams for the dumbbell trajectory shown in figure 4. A = 2,W = 0.5
and d = 1.40.

The effect of increasing the dumbbell length can be seen in figure 4 for A = 2,W = 0.5
and d = 1.4. Here, the dumbbell mass center moves on a more intricate path. The
motion is no longer periodic in the vertical direction. This effect can be clearly seen in
the corresponding path diagram in figure 7. It is interesting to note that there are some paths
where the dumbbell settles down vertically following the boundary line between cells, x = π .
There, the orientation angle is θ = π/2 which means that the dumbbell is oriented vertically.
These vertical trajectories always begin at the intersection point of four cells and extend down
to a point on the boundary line x = π and below the horizontal line y = π . This ending
point is particularly interesting because there, the vertical velocity goes to zero and the vertical
dumbbell orientation rapidly switches from vertical to horizontal. Also note that the mass
center is rapidly expelled to follow a more or less circular path. As a consequence of passing
near the ending point, the dumbbell slows down and the average vertical velocity is lesser than
in the previous case.
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Figure 8. Condensed path diagrams for the dumbbell trajectory of figure 5. A = 2,W = 0.5 and
d = 1.49.

Figures 5 and 8 show dumbbell dynamics for A = 2,W = 0.5 and d = 1.49. Note that
now the path has lost any periodicity and the motion may be described as chaotic. The mass
center of the dumbbell performs several loops where the settling motion is slowed down and,
as in the previous case, it spends part of the time on the vertical boundary line where the angle
orientation is θ = π/2. When it approaches the ending point the vertical velocity goes to zero
but in this case it is observed that there are periods of time (coincident with the occurrence of
a loop) where the vertical velocity is directed upward. As a consequence, the settling motion
slows down and the vertical average velocity takes the minimum value of the shown series.

The previous examples show that the settling motion is greatly affected by the dumbbell
length d. This dependence as well as the influence of the other parameters will be studied in
more detail in the following section.

4. Dependence of the settling motion with the dumbbell length

As shown in the previous section the vertical motion of the dumbbell results from the
superposed effect of inertia, gravity and drag force. It was shown that for certain parameter
combinations, the dumbbell mass center follows intricate paths and in consequence, the
instantaneous mass center velocity, Vy(t), results in very fluctuating functions of time. The
relative influence of all the involved parameters is better captured if a global integral description
of the settling motion is considered instead the instantaneous description given by Vy(t). Thus,
it is useful to introduce an average settling velocity, 〈Vy〉, computed evaluating Vy(t) for a
large number of dumbbells distributed in random initial positions through the cells and then
averaging over all of them once the asymptotic regime has been reached.

The value of 〈Vy〉 thus obtained was computed for several sets of parameters A, d and W

and the results are summarized in figures 9, 12 and 13.
For A = 2 and W = 0.25 the average velocity, 〈Vy〉, for small values of d is approximately

twice the still fluid settling velocity, W . In the limit when the bead-to-bead length tends to
zero, the bead positions, r1, r2, approach r and then, equations (16) and (17) result

ẍ = A[(sin x cos y − Vx] (26)

ÿ = A[− cos x sin y − Vy − W)]. (27)

10
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Figure 9. Average settling velocity 〈Vy〉 as a function of the dumbbell length, d for inertia
parameter, A = 2 and still fluid settling velocity, W = 0.25.

Thus, for small d, the dynamics of the dumbbell mass center is equivalent to that of a
single spherical particle and accordingly, the average velocity resulted similar to that computed
by Maxey [15] for a single spherical particle in a cellular flow field under identical conditions
of inertia and gravity. It should be noted that a decrease in d causes the approach of the spheres
and thus some effects due to the interaction between them should appear. However, in the
present formulation these effects were not included so the above result has to be understood
as a necessary mathematical consequence of the model.

As d increases, the average settling velocity slightly increases and reaches its maximum
value of 〈Vy〉 � 0.55 at d � 0.87. A general feature of the motion in this range is that the
orbits are periodic.

At d = 0.87 there is a transition from periodic to irregular trajectories. Figure 10 shows
the power spectra, P, of the vertical velocity Vy(t) for two values of the bead-to-bead distance
after and before the transition. The power spectra describes how the power of a given signal
is distributed over the frequency interval. It was computed from the usual definition:

P(f ) = 1∑N−1
n=0 w(n)2

B(f )2, (28)

where B(f ) is the FFT of the sampled data, Vy(t) and w(n) is the Hanning window:
w(n) = 1/2[1 − cos(2πn/(N − 1))]. For d = 0.8 the power spectra reveal the periodic
character of the motion. The main pick corresponds to f = 1/T where T, the period of the
path, is given by the ratio T = π/〈Vy〉. On the contrary, the power spectra for d = 0.9
also present several distinguishable frequencies but they exhibit a noisy structure which is
consistent with the irregular character of the motion. While a detailed study of irregular
motions is beyond the scope of this work, it is worth noting that such complex dynamics
could be expected because the system of equations (16), (17) and (24) represents a third-order
autonomous dynamical system and this is the lowest order for an unforced dynamical system
to exhibit chaotic motion [16].

For d > 0.87 the average velocity globally decreases and presents two local minima at
d = 1.45 and d = 1.8. These events were not studied in detail but it was noted that they are

11
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(a) (b)

Figure 10. Power spectra of Vy(t) for A = 2,W = 0.25 and for dumbbell lengths (a) d = 0.8;
(b) d = 0.9.

-π/2 0 π/2
-5π

-4π

-3π

π/2 π 3π/2
π/2

π

3π/2 π 2π
π

2π

 

(a)

(b)

(c)

Figure 11. Center-of-mass trajectories in the suspension zone for A = 2,W = 0.25 and
(a) d = 2.16, limited but open cycle, (b) d = 2.17, closed limit cycle, (c) d = 2.19, fixed
point.

associated with local transitions between irregular and periodic behavior in the vicinity of the
minima.

At approximately d = 2.05, 〈Vy〉 decays to zero and remains null up to d = 2.51. In this
range, the dumbbells begin their motion settling out during a short time and then they enter
into a trapping zone where they remain suspended indefinitely. The asymptotic paths may be
classified into three types depending on the value of the dumbbell length, d: open but spatially
limited orbits for 2.05 < d < 2.165, limit cycles for 2.165 < d < 2.18, or fixed points for
2.18 < d < 2.51. Figure 11 shows examples of such behavior.
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Figure 12. Average settling velocity 〈Vy〉 as a function of the dumbbell length, d for inertia
parameter, A = 0.2 and still fluid settling velocity, W = 0.5.

Figure 13. Average settling velocity 〈Vy〉 as a function of the dumbbell length, d for inertia
parameter, A = 0.2 and still fluid settling velocity, W = 0.75.

For d > 2.51 the average velocity experiences a rapid transition to values generally larger
than W = 0.25. In this range the curve is irregular and presents two sharp local maxima at
d = 2.75 and d = 3.92. As in the previous case, these local maxima are associated with
changes between irregular and periodic trajectories.

Figures 12 and 13 for A = 2, show the effect of increasing the value of the still fluid
settling velocity, W . Results for W = 0.5 and W = 0.75 are presented. The graphs show
similar transitions as in figure 9 for W = 0.25. The most important differences between
the plots are the extension and location of the suspension region. As W is increased, the
suspension range begins at smaller values of d and then extends over a narrow interval. In the
limit W = 1 the suspension range converges to one single point in the limit d = 0. This point
will be discussed later in section 5.
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Figure 14. Average settling velocity 〈Vy〉 as a function of the still fluid settling velocity, W .
Circles: d = 1.3; dotted-line: d = 0 (single-bead).

The influence of the still fluid settling velocity, W , for a fixed inertia parameter A = 2
and dumbbell length d = 1.3 can be seen in figure 14. For comparison, the settling velocity
for a single spherical particle with A = 2, first studied by Maxey [15], was also plotted. This
last case was obtained by setting d = 0 in equations (16) and (17), disregarding the effect
of rotation. For this case it is observed that 〈Vy〉 initially increases and reaches a maximum
somewhere about W = 0.4 before decreasing to higher values of W . As mentioned above, the
settling velocity is zero at W = 1, then it increases again but always below the line 〈Vy〉 = W

to approach this line asymptotically.
On the other hand, the settling velocity for the rigid dumbbell has a more intricate behavior.

The graph of 〈Vy〉 goes through several local maxima and minima associated with changes in
the periodicity of the trajectories in the range 0 < W < 0.58. It presents a similar structure
such as the plot of 〈Vy〉 for a single particle but with smaller values.

The interesting feature here is that the settling velocity is greater than W for W < 0.61.
Under these circumstances the effect of gravity is small and the dumbbell is mainly driven
for relatively large fluid forces. As a consequence, the dumbbell trajectory becomes twisted
and it is capable of overcoming regions of upward flow. As it moves through zones of rapid
downward flow the settling velocity is significantly increased.

As W increases, the influence of fluid forces decreases and the dumbbell is compelled to
move in a more rectilinear path. Now the dumbbell is not capable of avoiding zones of upward
flow and consequently the settling velocity is remarkably decreased.

About W = 0.58, the dumbbell passes through a stable equilibrium point and
consequently the settling velocity drops to zero. This point marks the beginning of a wide
suspension region which extends over the range 0.58 < W < 0.69. Within this interval the
dumbbell remains trapped into one of the three asymptotic paths described above.

For W > 0.69, the settling velocity increases monotonously but always below the value
of the still fluid settling velocity W . As W becomes large, the influence of the fluid forces
becomes negligible and the settling velocity asymptotically approaches the line Vy = W .
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5. Equilibrium points and stability

Regarding the settling motion of the dumbbell in the cellular flow field, an important point
to be considered is the existence of equilibrium or fixed points. A dumbbell which moves
downward under the combined effects of gravity, drag and inertia will be slowed down or
even it may be held stationary by the flow when it passes near a fixed point so that its settling
properties such as the average settling velocity may be greatly affected. A fixed point occurs
when the net force and torque vanish on the dumbbell. When applied in equations (16), (17)
and (24) these conditions imply

0 = sin(xp + d/2 cos θp) cos(yp + d/2 sin θp)

+ sin(xp − d/2 cos θp) cos(yp − d/2 sin θp) (29)

0 = cos(xp + d/2 cos θp) sin(yp + d/2 sin θp)

+ cos(xp − d/2 cos θp) sin(yp − d/2 sin θp)) + 2W (30)

0 = cos θp[cos(xp + d/2 cos θp) sin(yp + d/2 sin θp)

− cos(xp − d/2 cos θp) sin(yp − d/2 sin θp)]

− sin θp[sin(xp + d/2 cos θp) cos(yp + d/2 sin θp)

− sin(xp − d/2 cos θp) cos(yp − d/2 sin θp)], (31)

where, xp, yp and θp, are the coordinates of the fixed point. Although solutions of the above
equations cannot be obtained for the general case, some particular cases with high symmetry
can be analyzed with relative facility. As an example, consider the case d = 0 for which the
dumbbell behaves as a single particle. The above equations reduce to

0 = sin xp cos yp (32)

0 = cos xp sin yp + W. (33)

Maxey [15] found that solutions of these systems are linearly unstable for all values of W

except for W = 0 and W = 1 for which the fixed points are neutrally stable.
A simple example of fixed point with d �= 0 can be obtained when the dumbbell is oriented

perpendicular to the gravity (θp = 0) with the mass center at some position (xp, yp). After
some algebra the system reduces to

0 = sin xp cos yp cos d/2 (34)

0 = cos xp sin yp cos d/2 + W (35)

0 = sin yp sin xp sin d/2. (36)

Equilibrium points exist if |cos d/2| � W � 1. Equation (34) and then equation (36) are
immediately satisfied if xp = nπ (n = −1, 0, 1). Substituting into equation (35) leads to

sin yp = (−1)n+1 W

cos d/2
. (37)

The equilibrium points (xp, yp) together with the dumbbell bead positions are plotted in
figure 15 as a function of the dumbbell length and for five different values of the terminal
velocity W . In view of the periodicity of the system only the case xp = π is considered. Also
note that the analysis is restricted to dumbbell lengths in the interval 0 � d � 2π .
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Figure 15. The position of the dumbbell beads for the horizontal fixed point θ = 0, xp = π and,
yp given by equation (37) (with n = 1) for five different values of W . The sketched dumbbell
corresponds to parameters d = 4.4 and W = 0.5. Gray filled areas correspond to stable fixed
points.

To determine the stability of the equilibrium points, equation (25) was linearized around
Xp = (π, yp, 0, 0, 0, 0), where the value of yp is obtained from equation (37). The resulting
system can be written as

Ẋ = AX, (38)

where A is the Jacobian matrix of f in equation (25) evaluated at Xp. Solutions of the
linearized system are proportional to exp(λt) where the values of λ are the roots of the
characteristic equation, det(A − λI) = 0. The fixed point is stable if and only if all the values
of λ have negative real part. This condition implies that λmax, the maximum of the real part of
eigenvalues, must be negative.

Figure 16 shows the plot of λmax as a function of the dumbbell length, d for A = 2
and W = 0.5. For comparison the plot of 〈Vy〉 versus d was also superposed. It can be
seen that there is a narrow region of d values where λmax is negative corresponding to stable
fixed points. In agreement, the average settling velocity, 〈Vy〉, is zero in this region. It is
interesting to note the correlation existing between the curves. It is clear that while λmax

diminishes (increases), that is, as the fixed point becomes more stable (unstable) the value
of 〈Vy〉 diminishes (increases), showing the stabilizing role played by the fixed point in the
settling process.

Another interesting feature is that suspension occurs within an interval of d values which
is larger than the stability interval corresponding to the horizontal fixed point. This result
indicates that other mechanisms which lead the system to suspension must exist in addition to
horizontal fixed point. As mentioned above, other possible modes of suspension are, open or

16



J. Phys. A: Math. Theor. 42 (2009) 025501 M F Piva and G R Martino

Figure 16. Value of the maximum of the real part of eigenvalues, λmax as a function of d for
W = 0.5 and A = 2. The results corresponding to 〈Vy〉 versus d were included for comparison.

0.1 1
0

π

d

W

Figure 17. Stability diagram in the (W, d) plane for A = 2. The regions show the various
modes for the dumbbell dynamics. Dark gray: suspension via the stable fixed point; light gray:
suspension via open or closed limit cycles, white: settling motion with 〈Vy〉 > 0.

closed limit cycles and non-horizontal fixed points. The diagram of figure 17 shows regions of
stability on the parameter plane (W, d) for A = 2. Suspension occurs for parameters within
the gray bands in the diagram. For parameters outside these bands the dumbbell settles out
with 〈Vy〉 > 0. The stable band can be subdivided into subregions according to the type of
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mechanism that leads to suspension. Thus, the dark gray region corresponds to parameters
for which the dumbbell is trapped by an horizontal fixed point. On the other hand, the light
gray region corresponds to suspension via the other aforementioned mechanisms. This last
region enlarges as W decreases indicating the importance of limit cycles (open or closed)
in leading the system to suspension. On the contrary, as W increases, the thickness of the
suspension band decreases until it becomes a single point for W = 1. This result emphasizes
the increasing role played by this parameter in the settling process: the larger is the value
of the still fluid settling velocity the smaller the possibility for dumbbells to come into the
suspension mode.

6. Concluding remarks

In this work we have presented numerical results for a dumbbell-like particle settling under
gravity in a cellular flow field. It was found that for given values of the inertia parameter, A,
and the terminal velocity, W , the average settling velocity, 〈Vy〉, depend in a non-trivial way on
the bead-to-bead distance d. For small d it was found that the trajectories are periodic but there
is a transition to chaotic motion when d surpasses certain critical value. Additional increases
in the length between spheres give place to successive transitions between periodic and chaotic
trajectories. Another feature which is common of all the analyzed set of parameters is the
occurrence of suspension for given ranges of the dumbbell length , d. It was shown that the
regime of suspension is related to the existence of stable fixed point which in turn originates
for the presence of a saddle point in the cellular flow. Even more, a correlation exists between
the degrees of stability of this fixed point(given by λmax) and the value of the average settling
velocity 〈Vy〉. However, it was observed that the fixed point is not the only mechanism which
leads to suspension. Several other suspension states were found such as: open but limited
orbit, closed limit cycles and also non-horizontal fixed points. These mechanisms were not
studied in detail and their roles in the settling process will deserve special attention in future
analysis.

The goal of this work was the construction of a simple physical model to evaluate the
dynamics of non-spherical particles with the focus on the effects of inhomogeneous mass
distribution. The assumption of d � R allowed us to overcome the mathematical difficulties
arising from considering the hydrodynamical interaction between the beads. However, this
force should be taken into account in order to obtain a more complete description of the
problem. According to reference [9], the interaction force between two identical beads writes

Fi = −β(u(ri) − vi) +
3

2

R

d
β[(u(ri) − vi)n̂]n̂, (39)

where n̂ is a unit vector perpendicular to the principal axis of the dumbbell. The proximity
of the two beads modifies Stokes drag law by increasing the drag coefficient in the quantity
3/2R/d and by introducing a second term of order R/d which is non-parallel to the relative
velocity. It is conjectured that this last term would affect the results presented here for d → 0
as long as the restriction of vanishing R is eliminated. This point will deserve further analysis
in the future work.
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